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Data on electron-molecule collisions in the gas phase have been used to obtain
information on the potential energy curve for the dissociation of a transient
anion RX" ™, where R is frequently an organic group and X often a halide. The
data include thermal dissociative attachment energies and vertical attachment
energies of RX. The data also consist of collision cross-sections (elastic. inelastic
and dissociative) which vary with the energy of the incident electron and with
the vibrational state or temperature of the molecule. Relevant expressions are
discussed. An approximate temperature-dependent expression is given for the
thermal dissociative attachment cross-section. The potential energy curve of the
transient anion appears in the theory of electron transfer reactions of RX that
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are accompanied by the bond rupture of R-X.

It is a real pleasure to contribute to these special papers
honoring our colleague, Professor Lennart Eberson. His
major contributions to the interpretation and under-
standing of organic electron transfer reactions have
served as a stimulating and important bridge between
the organic and chemical physics communities.

Many of these electron transfer-related reactions are
of the Sy2 type,'™ such as eqns. (1) and (2), where the
A~ can also denote, instead, a cation, R is an organic
group, and X~ is frequently a halide or some other
anion. Reaction (1) is followed by reactions of AR".

A" +RX->AR + X~ (1)
A +RX—-AR + X" (2)

Competing with these reactions are the bond dissociat-
ive electron transfers, probably largely ‘outer sphere’,' ™
[eqns. (3) and (4)], followed by reactions of the resulting
free radicals. In these reactions and in two-state models
for the S\2 reactions (1) and (2) a knowledge of the

potential energy curve for the anion RX ™ is needed.

A" +RX->R +X~ 3)

AT +RX->A+R +X~ 4)
In the present paper we consider information that can

be inferred about these anion potential energy curves
from data on electron-molecule collisions, eqn. (5).

e+RX-RX ~SR +X~ (5)

These data include the vertical electron attachment
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energy E,, the activation energy E, for the thermal
dissociative attachment, and various electron-molecule
collision cross-sections. The cross-sections are functions
of the incident electron energy and of the vibrational
quantum state or temperature of the molecule. These
data help characterize the dissociative anion potential
energy curve, though each brings with it additional
factors that need to be determined also. As an overview
we touch upon several of these measurements in the
present article, and leave a more detailed discussion to a
future contribution. A number of reviews on electron—
molecule collisions are available.>® Once a gas phase
anion potential energy curve has been determined for
reaction(5), the modification due to the solvent in reac-
tions (3) and (4) would still, of course, need to be
considered.

Potential energy curves. The potential energy curves
employed in discussion of electron-molecule collisions
are of several types. One example of a potential energy
curve as a function of the R-X separation distance x is
given in Fig. 1(a). In that figure the RX ™ potential
energy curve ¥V~ (x) is largely repulsive, with perhaps a
relatively shallow minimum, and is such that passage
past the intersection x = x, with the RX curve leads either
to reflection or to the dissociated products R™ and X ™.
There may be more than one nearby RX' ~ potential
energy curve V" (x), one such example being that in
Fig. 1(b), the second curve there leading asymptotically
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Fig. 1. Plots of potential energy curves for two cases of
reaction (5). In Fig. 1(a) there is only the anion repulsive
state. In Fig. 1(b) there is also an extra anion state, one which
leads asymptotically to R~ and X' instead of to R" and X™.

to R™ and to X'. Experimentally these two cases in
Fig. 1 differ notably® in their relationship of E, to other
properties, as discussed later.

For purposes of the present discussion we focus on
the two cases in Fig. 1. For the potential energy curve
Vrx for RX as a function of the RX bond distance x a
Morse curve will be assumed, eqn. (6), where x, is the
equilibrium value of x in the RX molecule. For the anion
in Fig. 1a a repulsive type of Morse curve ¥V~ (x) will be
assumed.!® For the moment we write it as eqn. (7), where
Ey is the electron affinity of X'. There is also in the gas
phase a long-range charge-induced dipole and in some
cases a charge-permanent dipole attractive term. We
return later to an attractive term for V™ (x).

V(x)=D(1 —e a=%2 _p (6)

V™ (x)=D e 26"%) _ E (7

Vertical attachment energy. The vertical attachment
energy E, can be used to obtain information on V™ (x,)
and, knowing ¥(x,), can be used to test theoretical ideas
on the activation energy of reaction (3) or (4). From
eqns. (6) and (7) E, is given by eqn. (8). Experimental
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values of E, are given in Table 1 for several compounds
of interest, and we use them to estimate D~.

E, =V (x)) = V(x,)=D" + D —Ex (8)

Using for the moment the simple form of the potential
energy curves given by eqns. (6) and (7), the value of
D~ is immediately obtained from eqn. (8) and the known
E,, D and Eyx. The results are given in Table 1. One
approximation, which has sometimes been used in the
literature,'© is to set D~ =D. It is seen in Table 1 that
that approximation is reasonably good for CH;Cl and
CH,3Br, but not so for the other alkyl compounds. The
alkyl R groups containing more than one C have a much
lower E,, and hence a much lower D™, than for R being
CHj,, even though the D is approximately the same. The
origin of this difference is presently not known, though
one suggestion!’ is that the ¢* CC orbitals in RX ~
depress the energy of the o* CX'~ orbital. Further
theoretical work on understanding these very low D~
values is clearly needed.

In addition to the vertical attachment energy there is
also the thermal dissociative attachment energy (DAE).
For a molecule whose vibrational quantum states are
thermally distributed at a temperature 7, the DAE is
typically shifted to lower electron energies relative to the
vertical attachment energy (VAE): 17 a competition, after
the initial electron attachment, occurs between the
re-emission of the electron and the reaching of the
intersection region x.. Systems formed by a vertical
attachment closer to the intersection, i.e., at larger RX
bond amplitudes, have a greater chance of surviving the
competition of the re-emission. Since they have a smaller
value of V™ (x)— V(x), they are formed at lower electron
energies. Thereby, the DAE is shifted to electron energies
lower than the VAE. The E,s in Table 1 refer mainly to
the VAEs of elastic or slightly inelastic collisions, and
not to DAEs. We turn next to thermal activation energies
E, for the electron-molecule dissociative attachment
reaction (5), where both the energy of the molecule and
that of the electron are distributed thermally.

Thermal activation energy. The data on activation ener-
gies for thermal electron dissociative attachment® fall
more or less into two classes: in one class of reactions
the activation energy is approximately equal to D— Ex.
In this case an interpretation® is that there are two RX'~
states, as in Fig. 1(b), one with the charge centered on
the R (typically when R is an aromatic) and the other
with the charge centered on the X. For C;HsCl, for
example, an initial vertical attachment to form the first
state then leads, after a crossing of an intersection, to
the second anionic state. When both intersections are
lower in energy than the asymptote of the R"+ X~ curve,
the rate-determining transition state is somewhere along
or near that asymptote. Thus, for this class, we can
understand from Fig. 1(b) why their E, values are
approximately equal to D— Ey.

In a second class of reactions, those in Fig. 1(a), the
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Table 1. Experimental data on E,, E,, D, Ex?

Entry No. R-X E, E, D Ex D~ Ref. (E,)
1 CH,F ca. 63 4.68 3.38 ca. 5.0 1
2 CH,CI 35 0.54 3.59 3.62 3.53 12,13
3 t-C4HoCl 1.80 0.47 3.58 3.62 1.84 14
4 C,H,CI-CI 0.38 3.46 3.62
5 CH,CI-Cl 1.23 0.33 3.44 3.62 1.41 12
6 CF,Ci-Cl 0.15 3.30 3.62
7 CHCl,—Cl 0.35 0.14 3.30 3.62 0.67 12
8 CFCl,-Cl 0 3.17 3.62
9 CCly—Cl ~0 0 3.08 3.62 12
10 CH3Br 2.4 0.25 3.02 3.37 2.75 15
11 C,HsBr 1.26 15
12 n-CsH,Br 1.20 0.34 3.14 3.57 1.43 15
13 CH,Br-Br 0.05 2.97 3.57
14 CHBr,-Br 0.01 2.84 3.57
15 CHl 0.03 2.45 3.06
16 CoHs! 0.50 0.05 2.39 3.06 1.17 15
17 n-C3H,| 0.53 3.06 15

®The energies are given in eV. The D and Ex values are taken from the collection in Ref. 9, apart from CH3F not given there,
and taken from Ref. 3 (p. 165). The E, values were taken from collection in Ref.9. D~ is calculated from eqn. (8), using the
values of E,, D and Ex. E, values of other RXs are given in Refs. 12, 14, 16 and 17.

activation energy E, exceeds the difference D— Ex. and
the intersection of V(x) and V'~ (x) is higher than the
asymptote of the V" (x). We focus on this more challen-
ging class in the present paper. Some thermal activation
energies E, for the electron-molecule dissociative attach-
ment reaction (5) for this class are tabulated in Table 1
and are plotted vs. Ex— D in Fig. 2.

The slope of the plot in Fig. 2 is approximately —1
for values of Ex—D less than 11 kcal mol~'. We may
compare the results in Fig. 2 with those obtained from a
model for reaction (3) or (4) sometimes employed in the
literature, ' in which D~ =D. The value of E, equals the
value of V, V(x_), at the intersection, less the initial value
V(x,). Obtaining x, by equating V(x.) and V™ (x.), eqns.
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Fig. 2. Experimental values of the activation energy E, for
the thermal dissociative attachment reaction eqgn. (5) plotted
versus the difference Ex— D in election affinity of X and the
RX dissociation energy D. The numbers beside each point
refer to those in Table 1. The empty squares are points for
which E, is not available.
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(6) and (7). yield. after a change of variable to X,
{X=exp[—a(x—x,)]}, the value X for X at the intersec-
tion, namely Ey/2D. Thereby, eqn. (9) holds,

E,=D— Ex+ E%/AD — A(Z 0v/2) 9)

where we have also subtracted the total zero-point energy
of RX at x, minus that at x,. This latter difference might
be of the order of 3 or so kcal mol !, depending upon
the system.

If E%/4D in eqn.(9) were approximately constant
(which it isn’t) this equation would have the roughly
correct slope of —1 for the plot in Fig. 2. However, the
barrier calculated from eqn. (9) is too high. For example,
in the units of Fig.2 (kcal mol™!), the E, calculated
from eqn. (9) at Ex—D=11 would be about 16 (or
perhaps about 13 if the zero-point term were included),
instead of the zero found in Fig. 2.

This breakdown of eqn.(9) is not surprising, and
could have been anticipated, since in eqn. (8) the approxi-
mation of D™= D already led to incorrect values for
E,, except for CH;Cl and CH;Br. (For them, as seen in
Table 1, D~ ~D.) The use of eqn. (9) leads for CH,;Cl
to a calculated E, of 0.86 ¢V minus the zero-point term.
(D was taken to be the mean of D and D~ in Table 1.)
This calculated value is not very far from the experi-
mental E, of 0.54 eV, though is too high.

There are possible ways of modifying the equations
for V(x) and ¥~ (x). There is a long-range attractive term
in V(x) due to an electron-molecular polarizability inter-
action, and also an attractive term in V™ (x), at least at
larger RX distances, due to the interaction of the X~
with the polarizable R. To take account of the second
attractive term one could add a suitable attractive term
in eqn. (7), varying as 1/r* when r isn’t small, where r is
the distance between X~ and the polarizability center of
R. One simple way of introducing some attractive term



into ¥~ (x), albeit not of the correct functional form, is
to set!®

Vo (x) 2D [—ce 7% 4 (1 4 ¢)e 24 7%)] — Ey
(10)

where c is a positive constant, and vanishes for a purely
repulsive curve. The presence of ¢ in eqn. (10) does not
affect the evaluation of D~ from E,, since the ¢ terms
cancel at x=x,, but it does affect the calculation of E,.
Purely for economy of parameters in the present article
we set b=d=ain eqns. (7) and (10) and inquire whether
there is some value of ¢ which could, in this overly
simplified model, reconcile the data. Calculations with a
value of ¢=0.6 yield the results given in Table 2 and
Fig. 3. It is seen, rather surprisingly, that this approxi-
mation provides a reasonable reconciliation of the experi-
mental values of E, with those of D and E,.

Equation (10) for V™ (x) displays a small potential
energy well: minimizing ¥~ (x) with respect to X yields
a value of ¢2D~/4(1+4c) for the well depth. With a
¢~0.6, this depth is seen to be about 0.056D~ and so,
with a typical D~ of ca. 1€V, it is only about 0.056 eV
or about 1.3 kcalmol™!, which is not unreasonable.

Table 2. Experimental and calculated E, values using c=0.6
and egns. (6) and (10)?

Entry No. R-X EQbs Ecale
2 CH;CI 0.54 0.64
3 t-C4HgCl 0.47 0.46
5 CH,CI-CI 0.33 0.32
7 CHCI,-CI 0.14 0.09

10 CH3Br 0.25 0.39

12 n-C3 H7Br 0.34 0.30

16 C,Hs 0.05 0.06

2The energies are given in eV. In the calculated E, values
the zero-point energy term similar to the one in eqn. (9) is
omitted for brevity. If it were included, a somewhat smaller
¢ would be used in obtaining a fit to E2S.
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Fig. 3. Comparison of calculated and experimental E, values.
The calculated one is based on eqns. (6) and (10) with ¢c=
0.6. The numbers beside each point refer to those in Table 2.
The empty diamonds are points for which the molecules
are CH3X.
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However, detailed ab initio calculations of V™ (x) are
clearly desirable. In eqn. (10) the use of some average ¢
instead of one which varies with R and with X~ is crude
and does not take into account (if the origin of the
attraction were mainly ion-induced dipole) the fact that
the radicals differ in their polarizability. Nevertheless,
the very large effect on E, of including a small attractive
term in the anion potential energy curve is striking. It
will be interesting to explore its role using subsequent
ab initio calculations of the anion potential energy curve.
Of particular interest in these V'~ (x) curves is understand-
ing the very large differences in the VAEs, E,, of methyl
vs. the other alkyl halides.

We turn next to a somewhat more formidable topic,
the dynamics of electron-molecule collisions, an area for
which there is already an extensive literature, a few of
the numerous examples being Refs. 5-8, 12 and 19-47.

Cross-sections for electron-molecule collisions. It may be
recalled that a collision or reaction cross-section G is
defined as the total outgoing flux of the particles from a
scattering event per unit incident flux per unit area.363’
In electron-molecule collisions, the cross-sections o for
inelastic or dissociative scattering are obtained*® by sum-
ming over all orbital angular momentum states / of the
incident electron (usually /0 or 1 at the typical electron
energies studied in the systems of interest here) as given
in eqn. (11), where P, is the probability of the event at
the given /, and k is the wavenumber for the colliding
electron. The electron energy € equals k*4%/2m, where m
is the electron mass.

c:%§(21+1)P, (11)
[¢]

A rate constant k(g, n) for a given vibrational state n
of the molecule and a given electron energy ¢ is vo(e, n),
v being the electron velocity. To calculate the overall rate
constant at fixed ¢ this k(g, n) is then thermally averaged
over the vibrational quantum states n of the molecule.
Thereby, k(e, T') at a temperature 7 of the molecule is
obtained and can be compared with data on this quantity.

If only a single resonance state of the electron-molec-
ule system occurred, with no other source of broaden-
ing, the total cross-section ¢ would be?”3® of the
Breit-Wigner form, eqn. (12), where ¢, is the energy of
the center of the resonance, and I' is the width of the
resonance at half-height. The lifetime for re-emission of
the electron from this metastable resonance state is #/T.
According to an expression of Wigner®® I'(g) varies as
g'*12 In addition to the purely resonant scattering
[eqn. (12)] there may also be a background scattering of
the electron. The amplitude of this background and that
of the resonance can interfere, yielding a Fano lineshape
expression.??*® Further, the resonance may be pro-
nounced at some scattering angles Q (in a study of
differential scattering cross-sections do/dQ2 rather than
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total cross-sections o) and hardly visible at others, e.g.,
as in Ref. 13.

ﬁ41‘c(21+1) I?
TR (e )@Y

We consider now the dissociative attachment cross-
section o, and the inelastic cross-section for vibrational
excitation of the molecule o,. Each o is sensitive to the
anion potential energy curve ¥~ (x) and serves to provide
further indirect experimental information about the
latter, when V(x) is known, e.g. Refs. 5, 20, 21, 24, 25,
31-35, 41-47. Calculations of these ¢ values have been
made using ab initio or empirical values for ¥~ (x), most
frequently for diatomic molecules. The parameters in the
empirical ¥~ (x) are chosen so as to obtain the best fit
for one or both o values.

As an illustration we consider a theoretical expression
for opy (e, ) that is based on the Franck—-Condon prin-
ciple, and indicate a simple approximate extension when
the molecule has a thermal equilibrium distribution of n
at a temperature 7, rather than being only in a pre-
selected vibrational state n.

Apart from various constants. omitted here in the
interests of notational brevity, o, is given, with several
approximations, as a function of the energy e of the
incident electron and of the vibrational state n of the
molecule by eqn. (13),'%21:22 where y,, is the initial vibra-
tional wavefunction of the molecule, x, is the value of x
which satisfies the Franck-Condon restriction in
eqn. (14) for the attachment of an electron of energy &,
I'(x,)/# is the autoionization rate of the electron in the
anion at x=x,, and V'’ is the derivative dV (x)/dx,
evaluated at x,, and z, is defined below.

(12)

I(x,) -
Ooa (% &) 1 ()P (13)
V@) — Vix) =¢ (14)

This x, serves as a point from which the separation
between the products of the electron dissociation attach-
ment, R" and X, begins along the repulsive curve ¥ (x).

The x-dependent electronic energy of an RX'~ anion
which can re-emit the electron is frequently described via
a complex-valued potential W(x), eqn. (15), where the
iT"(x)/2 takes into account the electron re-emission.

W(x)= V" (x) +iT(x)/2 (15)

According to the Franck—Condon principle the vertical
transition to a complex-valued potential W(x) as a result
of a collision with an electron of energy ¢, occurs at a z,
which is a complex-valued x that satisfies eqn. (16).

Wiz) —V(z)=¢ (16)

Upon expansion of W—V in powers of z.— x, and
using eqn. (16), one sees that z, is given by eqn. (17),
where V', is given by eqn. (18).

ze=x,—Ii[)2V} (17)
Va=V'(x)—V'(x,) (18)
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[Equation (18) differs slightly from a value used in
Refs. 19 and 21, where the 7'(x,) did not appear. In
that work attention was focused on the lowest vibrational
state of the molecule, and ¥’(x.) =0 there, and also
V™'(x,) is assumed to be very large.]

The exp(—p) in eqn. (13) is the probability (the sur-
vival probability)'°~?? that a system formed on the ¥~ (x)
curve at x, will survive before re-emitting the electron,
and so reach the intersection x, of the ¥ ~(x) and V(x)
curves, eqn. (19), where 7,—1¢, is the time for separating
R"+ X~ system to go from the point of formation x, to
the crossing point x.. In eqn. (19) v,,.(x) is the relative
velocity of the separating nuclei at x. Beyond x=x,, the
V~=(x) curve is below V(x) [e.g., Fig. 1(a)] and the
competing electron re-emission can no longer occur.

_ | Tdx _ [eTld
P ) 0~

We see from eqn. (13) that the measurement of op,
as a function of & and of the vibrational quantum state
n provides information indirectly on ¥ (x) and on I". A
simple modification of eqn. (13), namely eqn. (20) below.
yields op, (7, €), which can be compared with data on
this quantity. One can, of course, obtain this op, from
opa(n, €) by averaging the latter over the thermal distri-
bution of #. The modification is to use, for this thermally
averaged |y,|% a statistical mechanical expression, which
we have derived as an extension (to a complex-valued
coordinate) of an expression*® well-known for real co-
ordinates, where Re and Im denote ‘real part of” and
‘imaginary part of’, and are given in eqn. (17), and
where ©® =tanh(finp/2).

Oun\?
Y — -
<IXn("s) |>av = ( hr )

(19)

x exp[(—O(Re z,)* + (Im z.)*/0) (pe/h)]
(20)

Equation (20) was derived using Mehler’s formu]la3®->!

for sums of products of Hermite polynomials of different
arguments, here z, and z¥; ® is the angular vibration
frequency of the vibration (0/2n=v), B=1/kgT, and p
is the reduced mass for the vibrational coordinate x. At
low temperatures the exponent in eqn. (20) reduces to
the value appropriate to the square of the amplitude of
the wavefunction y,(z,) of the lowest vibrational
quantum state of this harmonic oscillator. The depend-
ence of the initial value of v,,.(x) in eqn. (19) on the
state n for a given ¢ was neglected in deriving eqn. (20)
for these steep ¥~ (x) values, an approximation was also
made'® in the limiting form of a derivation leading to
eqn. (13), through the use of a delta function of x—z,
as a final vibrational state wavefunction. Using an
approximation, namely that the effective ® becomes
temperature-dependent, one could extend eqn. (20) to
anharmonic oscillators, as will be discussed elsewhere,
together with giving a physically intuitive description of



eqn. (13), including the proportionality constant, and an
application of the equations to the data, so as to deter-
mine trends in slope of the anion potential energy curve
dV=(x.)/dx,.

Summary

Vertical attachment energies E, can be used to estimate
thermal dissociative attachment energies E,, as in Table 2
for the case treated in Fig. 1(a). A treatment which
contains a small attractive term for the anion potential
energy function ¥V~ (x) was seen to provide a better
agreement with experiment than one having only the
purely repulsive term. The elastic, inelastic and thermal
dissociative attachment cross-sections provide, indirectly,
more detailed information on ¥~ (x). Some of the under-
lying theory is discussed, eqn. (20) is derived, and the
need for further ab initio calculations of ¥~ (x) is noted.
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